Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 814
1.
Molecules ; 29(8)2024 Apr 16.
Article En | MEDLINE | ID: mdl-38675622

IRAK4 is a critical mediator in NF-κB-regulated inflammatory signaling and has emerged as a promising therapeutic target for the treatment of autoimmune diseases; however, none of its inhibitors have received FDA approval. In this study, we identified a novel small-molecule IRAK4 kinase inhibitor, DW18134, with an IC50 value of 11.2 nM. DW18134 dose-dependently inhibited the phosphorylation of IRAK4 and IKK in primary peritoneal macrophages and RAW264.7 cells, inhibiting the secretion of TNF-α and IL-6 in both cell lines. The in vivo study demonstrated the efficacy of DW18134, significantly attenuating behavioral scores in an LPS-induced peritonitis model. Mechanistically, DW18134 reduced serum TNF-α and IL-6 levels and attenuated inflammatory tissue injury. By directly blocking IRAK4 activation, DW18134 diminished liver macrophage infiltration and the expression of related inflammatory cytokines in peritonitis mice. Additionally, in the DSS-induced colitis model, DW18134 significantly reduced the disease activity index (DAI) and normalized food and water intake and body weight. Furthermore, DW18134 restored intestinal damage and reduced inflammatory cytokine expression in mice by blocking the IRAK4 signaling pathway. Notably, DW18134 protected DSS-threatened intestinal barrier function by upregulating tight junction gene expression. In conclusion, our findings reported a novel IRAK4 inhibitor, DW18134, as a promising candidate for treating inflammatory diseases, including peritonitis and IBD.


Inflammatory Bowel Diseases , Interleukin-1 Receptor-Associated Kinases , Peritonitis , Animals , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Interleukin-1 Receptor-Associated Kinases/metabolism , Mice , Peritonitis/drug therapy , Peritonitis/chemically induced , RAW 264.7 Cells , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Disease Models, Animal , Signal Transduction/drug effects , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Humans , Male , Phosphorylation/drug effects , Cytokines/metabolism , NF-kappa B/metabolism , Mice, Inbred C57BL
2.
Cell Signal ; 119: 111192, 2024 Jul.
Article En | MEDLINE | ID: mdl-38685522

IRAK1 has been implicated in promoting development of various types of cancers and mediating radioresistance. However, its role in cervical cancer tumorigenesis and radioresistance, as well as the potential underlying mechanisms, remain poorly defined. In this study, we evaluated IRAK1 expression in radiotherapy-treated cervical cancer tissues and found that IRAK1 expression is negatively associated with the efficacy of radiotherapy. Consistently, ionizing radiation (IR)-treated HeLa and SiHa cervical cancer cells express a lower level of IRAK1 than control cells. Depletion of IRAK1 resulted in reduced activation of the NF-κB pathway, decreased cell viability, downregulated colony formation efficiency, cell cycle arrest, increased apoptosis, and impaired migration and invasion in IR-treated cervical cancer cells. Conversely, overexpressing IRAK1 mitigated the anti-cancer effects of IR in cervical cancer cells. Notably, treatment of IRAK1-overexpressing IR-treated HeLa and SiHa cells with the NF-κB pathway inhibitor pyrrolidine dithiocarbamate (PDTC) partially counteracted the effects of excessive IRAK1. Furthermore, our study demonstrated that IRAK1 deficiency enhanced the anti-proliferative role of IR treatment in a xenograft mouse model. These collective observations highlight IRAK1's role in mitigating the anti-cancer effects of radiotherapy, partly through the activation of the NF-κB pathway. SUMMARY: IRAK1 enhances cervical cancer resistance to radiotherapy, with IR treatment reducing IRAK1 expression and increasing cancer cell vulnerability and apoptosis.


Apoptosis , Interleukin-1 Receptor-Associated Kinases , NF-kappa B , Uterine Cervical Neoplasms , Interleukin-1 Receptor-Associated Kinases/metabolism , Humans , Uterine Cervical Neoplasms/radiotherapy , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/metabolism , Female , Animals , NF-kappa B/metabolism , Apoptosis/radiation effects , Mice , HeLa Cells , Cell Proliferation , Mice, Nude , Cell Line, Tumor , Signal Transduction , Cell Movement , Radiation Tolerance , Xenograft Model Antitumor Assays , Cell Survival/radiation effects , Radiation, Ionizing
3.
Dev Comp Immunol ; 156: 105159, 2024 Jul.
Article En | MEDLINE | ID: mdl-38492902

Stress-induced immunosuppression (SIIS) is one of the common problems in intensive poultry production, which brings enormous economic losses to the poultry industry. Accumulating evidence has shown that microRNAs (miRNAs) were important regulators of gene expression in the immune system. However, the miRNA-mediated molecular mechanisms underlying SIIS in chickens are still poorly understood. This study aimed to investigate the biological functions and regulatory mechanism of miRNAs in chicken SIIS. A stress-induced immunosuppression model was successfully established via daily injection of dexamethasone and analyzed miRNA expression in spleen. Seventy-four differentially expressed miRNAs (DEMs) was identified, and 229 target genes of the DEMs were predicted. Functional enrichment analysis the target genes revealed pathways related to immunity, such as MAPK signaling pathway and FoxO signaling pathway. The candidate miRNA, gga-miR-146a-5p, was found to be significantly downregulated in the Dex-induced chicken spleen, and we found that Dex stimulation significantly inhibited the expression of gga-miR-146a-5p in Chicken macrophages (HD11). Flow cytometry, 5-ethynyl-2'-deoxyuridine (EdU), cell counting kit-8 (CCK-8) and other assays indicated that gga-miR-146a-5p can promote the proliferation and inhibit apoptosis of HD11 cells. A dual-luciferase reporter assay suggested that the Interleukin 1 receptor associated kinase 2 (IRAK2) gene, which encoded a transcriptional factor, was a direct target of gga-miR-146a-5p, gga-miR-146a-5p suppressed the post-transcriptional activity of IRAK2. These findings not only improve our understanding of the specific functions of miRNAs in avian stress but also provide potential targets for genetic improvement of stress resistance in poultry.


Chickens , Dexamethasone , Macrophages , MicroRNAs , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Chickens/immunology , Chickens/genetics , Macrophages/immunology , Macrophages/metabolism , Dexamethasone/pharmacology , Apoptosis , Immune Tolerance , Gene Expression Regulation , Immunosuppression Therapy , Avian Proteins/genetics , Avian Proteins/metabolism , Spleen/immunology , Spleen/metabolism , Signal Transduction , Stress, Physiological/immunology , Cell Line , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , Cell Proliferation
4.
Clin Immunol ; 261: 110167, 2024 04.
Article En | MEDLINE | ID: mdl-38453127

Excessive inflammatory response and increased oxidative stress play an essential role in the pathophysiology of ischemia/reperfusion (I/R)-induced acute kidney injury (IRI-AKI). Emerging evidence suggests that lipoxin A4 (LXA4), as an endogenous negative regulator in inflammation, can ameliorate several I/R injuries. However, the mechanisms and effects of LXA4 on IRI-AKI remain unknown. In this study, A bilateral renal I/R mouse model was used to evaluate the role of LXA4 in wild-type, IRG1 knockout, and IRAK-M knockout mice. Our results showed that LXA4, as well as 5-LOX and ALXR, were quickly induced, and subsequently decreased by renal I/R. LXA4 pretreatment improved renal I/R-induced renal function impairment and renal damage and inhibited inflammatory responses and oxidative stresses in mice kidneys. Notably, LXA4 inhibited I/R-induced the activation of TLR4 signal pathway including decreased phosphorylation of TAK1, p36, and p65, but did not affect TLR4 and p-IRAK-1. The analysis of transcriptomic sequencing data and immunoblotting suggested that innate immune signal molecules interleukin-1 receptor-associated kinase-M (IRAK-M) and immunoresponsive gene 1 (IRG1) might be the key targets of LXA4. Further, the knockout of IRG1 or IRAK-M abolished the beneficial effects of LXA4 on IRI-AKI. In addition, IRG1 deficiency reversed the up-regulation of IRAK-M by LXA4, while IRAK-M knockout had no impact on the IRG1 expression, indicating that IRAK-M is a downstream molecule of IRG1. Mechanistically, we found that LXA4-promoted IRG1-itaconate not only enhanced Nrf2 activation and increased HO-1 and NQO1, but also upregulated IRAK-M, which interacted with TRAF6 by competing with IRAK-1, resulting in deactivation of TLR4 downstream signal in IRI-AKI. These data suggested that LXA4 protected against IRI-AKI via promoting IRG1/Itaconate-Nrf2 and IRAK-M-TRAF6 signaling pathways, providing the rationale for a novel strategy for preventing and treating IRI-AKI.


Acute Kidney Injury , Lipoxins , Reperfusion Injury , Succinates , Mice , Animals , NF-E2-Related Factor 2/metabolism , TNF Receptor-Associated Factor 6/metabolism , TNF Receptor-Associated Factor 6/pharmacology , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/pharmacology , Signal Transduction , Kidney/metabolism , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Acute Kidney Injury/prevention & control
6.
Brain Res ; 1827: 148763, 2024 03 15.
Article En | MEDLINE | ID: mdl-38215866

Long-term alcohol misuse triggers cellular adaptions in susceptible regions of the human brain, resulting in neurodegeneration, neuroinflammation and altered gene expression. Previous studies have identified ∼35 miRNAs, including miR-146a-5p, which are up-regulated in the frontal cortex of males with alcohol use disorder (AUD), but the influence of liver cirrhosis and sex is unknown. The expression of miR-146a-5p, IRAK1, and TRAF6 was measured in the prefrontal cortex of controls and individuals with AUD with and without cirrhosis of the liver. Further, individuals were genotyped for two SNPs, rs2910164 and rs57095329. The expression of miR-146a-5p was significantly different between sexes. In males the expression of miR-146a-5p was increased in individuals with AUD with and without liver cirrhosis compared with controls. In females miR-146a-5p expression was significantly lower in individuals with AUD compared with both controls and those with AUD and cirrhosis, suggesting that both the severity of alcohol misuse and the sex of the individual influences the expression of miR-146a-5p. The expression of TRAF6 was significantly lower in individuals with uncomplicated AUD compared with those with AUD and cirrhosis. The expression of IRAK1 did not differ between groups or sexes. There was no influence of genotype on expression. Increased expression of miR-146a-5p did not correlate with decreased IRAK1 or TRAF6 expression suggesting a loss of regulatory control of the TLR4 pathway. Understanding sex-specific differences in the regulation of gene expression in AUD is key to determine which inflammatory pathways could be targeted for therapeutic intervention.


Alcoholism , Liver Cirrhosis, Alcoholic , MicroRNAs , Female , Humans , Male , Alcoholism/complications , Alcoholism/genetics , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Sex Factors , TNF Receptor-Associated Factor 6/genetics , TNF Receptor-Associated Factor 6/metabolism , Liver Cirrhosis, Alcoholic/genetics
7.
Mol Neurobiol ; 61(2): 581-592, 2024 Feb.
Article En | MEDLINE | ID: mdl-37640915

In spite of the vaccine development and its importance, the SARS-CoV-2 pandemic is still impacting the world. It is known that the COVID-19 severity is related to the cytokine storm phenomenon, being inflammation a common disease feature. The nicotinic cholinergic system has been widely associated with COVID-19 since it plays a protective role in inflammation via nicotinic receptor alpha 7 (nAchRalpha7). In addition, SARS-CoV-2 spike protein (Spro) subunits can interact with nAchRalpha7. Moreover, Spro causes toll-like receptor (TLR) activation, leading to pro- and anti-inflammatory pathways. The increase and maturation of the IL-1 receptor-associated kinase (IRAK) family are mediated by activation of membrane receptors, such as TLRs. IRAK-M, a member of this family, is responsible for negatively regulating the activity of other active IRAKs. In addition, IRAK-M can regulate microglia phenotype by specific protein expression. Furthermore, there exists an antagonist influence of SARS-CoV-2 Spro and the cholinergic system action on the IRAK-M pathway and microglia phenotype. We discuss the overexpression and suppression of IRAK-M in inflammatory cell response to inflammation in SARS-CoV-2 infection when the cholinergic system is constantly activated via nAchRalpha7.


COVID-19 , Signal Transduction , Spike Glycoprotein, Coronavirus , Humans , Signal Transduction/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , SARS-CoV-2 , Inflammation , Cholinergic Agents
9.
J Cell Biol ; 223(2)2024 02 05.
Article En | MEDLINE | ID: mdl-38078859

TLR/IL-1R signaling plays a critical role in sensing various harmful foreign pathogens and mounting efficient innate and adaptive immune responses, and it is tightly controlled by intracellular regulators at multiple levels. In particular, TOLLIP forms a constitutive complex with IRAK1 and sequesters it in the cytosol to maintain the kinase in an inactive conformation under unstimulated conditions. However, the underlying mechanisms by which IRAK1 dissociates from TOLLIP to activate TLR/IL-1R signaling remain obscure. Herein, we show that BLK positively regulates TLR/IL-1R-mediated inflammatory response. BLK-deficient mice produce less inflammatory cytokines and are more resistant to death upon IL-1ß challenge. Mechanistically, BLK is preassociated with IL1R1 and IL1RAcP in resting cells. IL-1ß stimulation induces heterodimerization of IL1R1 and IL1RAcP, which further triggers BLK autophosphorylation at Y309. Activated BLK directly phosphorylates TOLLIP at Y76/86/152 and further promotes TOLLIP dissociation from IRAK1, thereby facilitating TLR/IL-1R-mediated signal transduction. Overall, these findings highlight the importance of BLK as an active regulatory component in TLR/IL-1R signaling.


Cytokines , Interleukin-1 Receptor-Associated Kinases , Signal Transduction , src-Family Kinases , Animals , Mice , Cytokines/metabolism , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1beta/metabolism , Phosphorylation , src-Family Kinases/metabolism
10.
Life Sci ; 337: 122348, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38103725

Our previous work has demonstrated protein kinase D2 (PKD2) played a critical influence in experimental colitis in animal. However, the role of PKD2 in human norovirus (HuNoVs)-induced diarrhea remained unknown. Aquaporin 3 (AQP3) expression, a critical protein mediating diarrhea, was assessed by western blot, qRT-PCR in intestinal epithelial cells (IECs). Luciferase, IF, IP and ChIP assay were used to explore the mechanism through which HuNoVs regulated AQP3. Herein, we found that AQP3 expression was drastically decreased in IECs in response to VP1 transfection, the major capsid protein of HuNoVs, or HuNoVs infection. Mechanistically, HuNoVs triggered phosphorylation of PKD2 through TLR2/MyD88/IRAK4, which further inhibited AP2γ activation and nuclear translocation, leading to suppress AQP3 transactivation in IECs. Most importantly, PKD2 interacted with MyD88/IRAK4, and VP1 overexpression enhanced this complex form, which, in turn, to increase PKD2 phosphorylation. In addition, endogenous PKD2 interacted with AP2γ, and this interaction was enhanced in response to HuNoVs treatment, and subsequently resulting in AP2γ phosphorylation inhibition. Moreover, inhibition of PKD2 activation could reverse the inhibitory effect of HuNoVs on AQP3 expression. In summary, we established a novel mechanism that HuNoV inhibited AQP3 expression through TLR2/MyD88/IRAK4/PKD2 signaling pathway, targeting PKD2 activity could be a promising strategy for prevention of HuNoVs-induced gastroenteritis.


Norovirus , Protein Kinase D2 , Animals , Humans , Aquaporin 3/genetics , Aquaporin 3/metabolism , Interleukin-1 Receptor-Associated Kinases/metabolism , Norovirus/metabolism , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Epithelial Cells/metabolism , Protein Serine-Threonine Kinases/metabolism , Diarrhea
11.
Mil Med Res ; 10(1): 63, 2023 Dec 11.
Article En | MEDLINE | ID: mdl-38072993

BACKGROUND: Diabetic cardiomyopathy (DCM) causes the myocardium to rely on fatty acid ß-oxidation for energy. The accumulation of intracellular lipids and fatty acids in the myocardium usually results in lipotoxicity, which impairs myocardial function. Adipsin may play an important protective role in the pathogenesis of DCM. The aim of this study is to investigate the regulatory effect of Adipsin on DCM lipotoxicity and its molecular mechanism. METHODS: A high-fat diet (HFD)-induced type 2 diabetes mellitus model was constructed in mice with adipose tissue-specific overexpression of Adipsin (Adipsin-Tg). Liquid chromatography-tandem mass spectrometry (LC-MS/MS), glutathione-S-transferase (GST) pull-down technique, Co-immunoprecipitation (Co-IP) and immunofluorescence colocalization analyses were used to investigate the molecules which can directly interact with Adipsin. The immunocolloidal gold method was also used to detect the interaction between Adipsin and its downstream modulator. RESULTS: The expression of Adipsin was significantly downregulated in the HFD-induced DCM model (P < 0.05). Adipose tissue-specific overexpression of Adipsin significantly improved cardiac function and alleviated cardiac remodeling in DCM (P < 0.05). Adipsin overexpression also alleviated mitochondrial oxidative phosphorylation function in diabetic stress (P < 0.05). LC-MS/MS analysis, GST pull-down technique and Co-IP studies revealed that interleukin-1 receptor-associated kinase-like 2 (Irak2) was a downstream regulator of Adipsin. Immunofluorescence analysis also revealed that Adipsin was co-localized with Irak2 in cardiomyocytes. Immunocolloidal gold electron microscopy and Western blotting analysis indicated that Adipsin inhibited the mitochondrial translocation of Irak2 in DCM, thus dampening the interaction between Irak2 and prohibitin (Phb)-optic atrophy protein 1 (Opa1) on mitochondria and improving the structural integrity and function of mitochondria (P < 0.05). Interestingly, in the presence of Irak2 knockdown, Adipsin overexpression did not further alleviate myocardial mitochondrial destruction and cardiac dysfunction, suggesting a downstream role of Irak2 in Adipsin-induced responses (P < 0.05). Consistent with these findings, overexpression of Adipsin after Irak2 knockdown did not further reduce the accumulation of lipids and their metabolites in the cardiac myocardium, nor did it enhance the oxidation capacity of cardiomyocytes expose to palmitate (PA) (P < 0.05). These results indicated that Irak2 may be a downstream regulator of Adipsin. CONCLUSIONS: Adipsin improves fatty acid ß-oxidation and alleviates mitochondrial injury in DCM. The mechanism is related to Irak2 interaction and inhibition of Irak2 mitochondrial translocation.


Diabetes Mellitus, Type 2 , Diabetic Cardiomyopathies , Animals , Mice , Chromatography, Liquid , Complement Factor D/metabolism , Complement Factor D/pharmacology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Fatty Acids/adverse effects , Fatty Acids/metabolism , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/pharmacology , Lipids , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Tandem Mass Spectrometry
12.
Sci Signal ; 16(816): eadh3449, 2023 12 19.
Article En | MEDLINE | ID: mdl-38113335

Interleukin-1 receptor (IL-1R)-associated kinases (IRAKs) are core effectors of Toll-like receptors (TLRs) and IL-1R in innate immunity. Here, we found that IRAK4 and IRAK1 together inhibited DNA damage-induced cell death independently of TLR or IL-1R signaling. In human cancer cells, IRAK4 was activated downstream of ATR kinase in response to double-strand breaks (DSBs) induced by ionizing radiation (IR). Activated IRAK4 then formed a complex with and activated IRAK1. The formation of this complex required the E3 ubiquitin ligase Pellino1, acting structurally but not catalytically, and the activation of IRAK1 occurred independently of extracellular signaling, intracellular TLRs, and the TLR/IL-1R signaling adaptor MyD88. Activated IRAK1 translocated to the nucleus in a Pellino2-dependent manner. In the nucleus, IRAK1 bound to the PIDD1 subunit of the proapoptotic PIDDosome and interfered with platform assembly, thus supporting cell survival. This noncanonical IRAK signaling pathway was also activated in response to other DSB-inducing agents. The loss of IRAK4, of IRAK4 kinase activity, of either Pellino protein, or of the nuclear localization sequence in IRAK1 sensitized p53-mutant zebrafish to radiation. Thus, the findings may lead to strategies for overcoming tumor resistance to conventional cancer treatments.


Interleukin-1 Receptor-Associated Kinases , Receptors, Interleukin-1 , Animals , Humans , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/metabolism , Zebrafish/metabolism , Signal Transduction , Toll-Like Receptors/metabolism , DNA Damage , Apoptosis
13.
Development ; 150(24)2023 Dec 15.
Article En | MEDLINE | ID: mdl-37997696

Toll-like receptors (TLRs) in mammalian systems are well known for their role in innate immunity. In addition, TLRs also fulfil crucial functions outside immunity, including the dorsoventral patterning function of the original Toll receptor in Drosophila and neurogenesis in mice. Recent discoveries in flies suggested key roles for TLRs in epithelial cells in patterning of junctional cytoskeletal activity. Here, we address the function of TLRs and the downstream key signal transduction component IRAK4 in human epithelial cells. Using differentiated human Caco-2 cells as a model for the intestinal epithelium, we show that these cells exhibit baseline TLR signalling, as revealed by p-IRAK4, and that blocking IRAK4 function leads to a loss of epithelial tightness involving key changes at tight and adherens junctions, such as a loss of epithelial tension and changes in junctional actomyosin. Changes upon IRAK-4 inhibition are conserved in human bronchial epithelial cells. Knockdown of IRAK4 and certain TLRs phenocopies the inhibitor treatment. These data suggest a model whereby TLR receptors near epithelial junctions might be involved in a continuous sensing of the epithelial state to promote epithelial tightness and integrity.


Interleukin-1 Receptor-Associated Kinases , Toll-Like Receptors , Humans , Caco-2 Cells , Immunity, Innate , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , Signal Transduction
14.
Front Immunol ; 14: 1239082, 2023.
Article En | MEDLINE | ID: mdl-37954584

Several studies have identified mutations in the MYD88L265P gene as a key driver mutation in several B-cell lymphomas. B-cell lymphomas that harbor the MYD88L265P mutation form a complex with phosphorylated Bruton's tyrosine kinase (BTK) and are responsive to BTK inhibition. However, BTK inhibition in B-cell lymphomas rarely results in a complete response and most patients experience eventual disease relapse. Persistent survival signaling though downstream molecules such as interleukin 1 receptor-associated kinase 4 (IRAK-4), an integral part of the "myddosome" complex, has been shown to be constitutively active in B-cell lymphoma patients treated with BTK inhibitors. Emerging evidence is demonstrating the therapeutic benefit of IRAK-4 inhibition in B-cell lymphomas, along with possibly reversing BTK inhibitor resistance. While MYD88 gene mutations are not present in myeloid malignancies, downstream overexpression of the oncogenic long form of IRAK-4 has been found in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), particularly in AML and MDS that harbor mutations in splicing factors U2AF1 and SF3B1. These data suggest that the anti-leukemic activity of IRAK-4 inhibition can be exploited in relapsed/refractory (R/R) AML/MDS. In this review article, we discuss the currently available pre-clinical and clinical data of emavusertib, a selective, orally bioavailable IRAK-4 inhibitor in the treatment of R/R B-cell lymphomas and myeloid malignancies.


Leukemia, Myeloid, Acute , Lymphoma, B-Cell , Myeloproliferative Disorders , Humans , Protein-Tyrosine Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , Signal Transduction , Agammaglobulinaemia Tyrosine Kinase , Lymphoma, B-Cell/drug therapy , Lymphoma, B-Cell/genetics
15.
Int J Mol Sci ; 24(20)2023 Oct 12.
Article En | MEDLINE | ID: mdl-37894788

Microbial resistance to antibiotics poses a tremendous challenge. Bacteriophages may provide a useful alternative or adjunct to traditional antibiotics. To be used in therapy, bacteriophages need to be purified from endotoxins and tested for their effects on human immune cells. Interleukin-1 Receptor Associated Kinase-3 (IRAK3) is a negative regulator of inflammation and may play a role in the modulation of immune signalling upon bacteriophage exposure to immune cells. This study aimed to investigate the immune effects of crude and purified bacteriophage FNU1, a bacteriophage that targets the oral pathobiont Fusobacterium nucleatum, on wildtype and IRAK3 knockout THP-1 monocytic cell lines. The IRAK3 knockout cell line was also used to develop a novel endotoxin detection assay. Exposure to crude FNU1 increased the production of pro-inflammatory cytokines (Tumour necrosis factor - alpha (TNF-α) and Interleukin 6 (IL-6)) compared to purified FNU1 in wildtype and IRAK3 knockout THP-1 monocytes. In the IRAK3 knockout THP-1 cells, exposure to crude FNU1 induced a higher immune response than the wildtype monocytes, supporting the suggestion that the inhibitory protein IRAK3 regulates reactions to endotoxins and impurities in bacteriophage preparations. Finally, the novel endotoxin detection assay generated here provides a robust and accurate method for determining endotoxin concentrations.


Bacteriophages , Cytokines , Humans , Cytokines/metabolism , Monocytes/metabolism , Fusobacterium nucleatum/metabolism , Endotoxins/metabolism , Bacteriophages/genetics , Bacteriophages/metabolism , Tumor Necrosis Factor-alpha/metabolism , Anti-Bacterial Agents/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism
16.
Rinsho Ketsueki ; 64(9): 1007-1018, 2023.
Article Ja | MEDLINE | ID: mdl-37793857

Chronic myeloid leukemia (CML) stem cells have been identified to promote CML relapse due to their quiescent cell cycle and tyrosine kinase inhibitor resistance. Therefore, their eradication is important for the cure of CML. We herein identified the quiescent CML stem cell fraction using a G0 marker that can visualize quiescent cells. Whole-transcriptome analysis of imatinib-resistant, quiescent CML stem cells revealed that NF-κB is activated via inflammatory signals in the same cells. The combination of imatinib and an inhibitor of this inflammatory signal (IRAK1/4 inhibitor) effectively eliminated CML stem cells and attenuated PD-L1 expression in CML stem cells. Furthermore, the combination of anti-PD-L1 antibody and imatinib effectively eliminated CML stem cells in the presence of T-cell immunity, indicating the importance of creating an environment in which T cells can attack CML stem cells. Thus, IRAK1/4 inhibitors exert two effects: blocking CML stem cell survival and proliferation signals by inhibiting NF-κB and blocking T cell immune evasion by reducing PD-L1 expression in CML stem cells. Collectively, their combination may be one of the attractive strategies for achieving a radical cure for CML. Discussions regarding the possibility of future medications seem warranted.


B7-H1 Antigen , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , NF-kappa B , Fusion Proteins, bcr-abl , Apoptosis , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Stem Cells/metabolism , Neoplastic Stem Cells , Drug Resistance, Neoplasm , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/pharmacology , Interleukin-1 Receptor-Associated Kinases/therapeutic use
17.
Sci Transl Med ; 15(715): eade3157, 2023 09 27.
Article En | MEDLINE | ID: mdl-37756381

Obesity is increasing worldwide and leads to a multitude of metabolic diseases, including cardiovascular disease, type 2 diabetes, nonalcoholic fatty liver disease, and nonalcoholic steatohepatitis (NASH). Cysteine-rich angiogenic inducer 61 (CYR61) is associated with the progression of NASH, but it has been described to have anti- and proinflammatory properties. We sought to examine the role of liver CYR61 in NASH progression. CYR61 liver-specific knockout mice on a NASH diet showed improved glucose tolerance, decreased liver inflammation, and reduced fibrosis. CYR61 polarized infiltrating monocytes promoting a proinflammatory/profibrotic phenotype through an IRAK4/SYK/NF-κB signaling cascade. In vitro, CYR61 activated a profibrotic program, including PDGFa/PDGFb expression in macrophages, in an IRAK4/SYK/NF-κB-dependent manner. Furthermore, targeted-antibody blockade reduced CYR61-driven signaling in macrophages in vitro and in vivo, reducing fibrotic development. This study demonstrates that CYR61 is a key driver of liver inflammation and fibrosis in NASH.


Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/pathology , Interleukin-1 Receptor-Associated Kinases/metabolism , NF-kappa B/metabolism , Diabetes Mellitus, Type 2/metabolism , Disease Models, Animal , Liver/metabolism , Hepatocytes/metabolism , Fibrosis , Macrophages/metabolism , Mice, Knockout , Mice, Inbred C57BL
18.
Cell Biochem Funct ; 41(8): 1188-1199, 2023 Dec.
Article En | MEDLINE | ID: mdl-37732723

Organisms frequently suffer negative effects from large doses of ionizing radiation. However, radiation is not as hazardous at lower doses as was once believed. The current study aims to evaluate the possible radio-adaptive effect induced by low-dose radiation (LDR) in modulating high-dose radiation (HDR) and N-nitrosodiethylamine (NDEA)-induced lung injury in male albino rats. Sixty-four male rats were randomly divided into four groups: Group 1 (control): normal rats; Group 2 (D): rats given NDEA in drinking water; Group 3 (DR): rats administered with NDEA then exposed to fractionated HDR; and Group 4 (DRL): rats administered with NDEA then exposed to LDR + HDR. In the next stage, malondialdehyde (MDA), glutathione reduced (GSH), catalase (CAT), and superoxide dismutase (SOD) levels in the lung tissues were measured. Furthermore, the enzyme-linked immunoassay analysis technique was performed to assess the Toll-like receptor 4 (TLR4), interleukin-1 receptor-associated kinase 4 (IRAK4), and mitogen-activated protein kinases (MAPK) expression levels. Histopathological and DNA fragmentation analyses in lung tissue, in addition to hematological and apoptosis analyses of the blood samples, were also conducted. Results demonstrated a significant increase in antioxidant defense and a reduction in MDA levels were observed in LDR-treated animals compared to the D and DR groups. Additionally, exposure to LDR decreased TLR4, IRAK4, and MAPK levels, decreased apoptosis, and restored all the alterations in the histopathological, hematological parameters, and DNA fragmentation, indicating its protective effects on the lung when compared with untreated rats. Taken together, LDR shows protective action against the negative effects of subsequent HDR and NDEA. This impact may be attributable to the adaptive response induced by LDR, which decreases DNA damage in lung tissue and activates the antioxidative, antiapoptotic, and anti-inflammatory systems in the affected animals, enabling them to withstand the following HDR exposure.


Interleukin-1 Receptor-Associated Kinases , Liver , Rats , Male , Animals , Liver/metabolism , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/pharmacology , Toll-Like Receptor 4/metabolism , Antioxidants/pharmacology , Glutathione/metabolism , Diethylnitrosamine/metabolism , Diethylnitrosamine/pharmacology , Signal Transduction , Lung/metabolism , Oxidative Stress
19.
Biol Reprod ; 109(6): 938-953, 2023 12 11.
Article En | MEDLINE | ID: mdl-37676254

A large proportion of miscarriages are classified as unexplained miscarriages since no cause is identified. No reliable biomarkers or treatments are available for these pregnancy losses. While our transcriptomic sequencing has revealed substantial upregulation of miR-146b-5p in unexplained miscarriage villous tissues, its role and associated molecular processes have yet to be fully characterized. Our work revealed that relative to samples from normal pregnancy, miR-146b-5p was significantly elevated in villous tissues from unexplained miscarriage patients and displayed promising diagnostic potential. Moreover, miR-146b-5p agomir contributed to higher rates of embryonic resorption in ICR mice. When overexpressed in HTR-8/SVneo cells, miR-146b-5p attenuated the proliferative, invasive, and migratory activity of these cells while suppressing the expression of MMP9 and immune inflammation-associated cytokines, including IL1B, IL11, CXCL1, CXCL8, and CXCL12. Conversely, inhibition of its expression enhanced proliferation, migration, and invasion abilities. Mechanistically, IL-1 receptor-associated kinase-1 and a disintegrin and metalloproteinase 19 were identified as miR-146b-5p targets regulating trophoblast function, and silencing IL-1 receptor-associated kinase-1 had similar effects as miR-146b-5p overexpression, while IL-1 receptor-associated kinase-1 overexpression could partially reverse the inhibitory impact of this microRNA on trophoblasts. miR-146b-5p may inhibit trophoblast proliferation, migration, invasion, and implantation-associated inflammation by downregulating IL-1 receptor-associated kinase-1 and a disintegrin and metalloproteinase 19, participating in the pathogenesis of miscarriage and providing a critical biomarker and a promising therapeutic target for unexplained miscarriage.


Abortion, Spontaneous , MicroRNAs , Mice , Animals , Pregnancy , Female , Humans , Abortion, Spontaneous/genetics , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/pharmacology , Disintegrins/metabolism , Disintegrins/pharmacology , Mice, Inbred ICR , MicroRNAs/genetics , MicroRNAs/metabolism , Trophoblasts/metabolism , Inflammation/metabolism , Cell Proliferation/physiology , Metalloproteases/metabolism , Cell Movement , ADAM Proteins/metabolism
20.
Mol Biol Rep ; 50(9): 7825-7837, 2023 Sep.
Article En | MEDLINE | ID: mdl-37490192

The IRAK-4 kinase lies at a critical signaling node that drives cancer cell survival through multiple mechanisms, activation, and translocation of NF-κB mediated inflammatory responses and innate immune signaling through regulation of interferon-α/ß receptor (IFNα/ß). Inhibition, of IRAK-4, has consequently drawn a lot of attention in recent years to address indications ranging from oncology to autoimmune disorders to neurodegeneration, etc. However, the key stumbling block in targeting IRAK-4 is that despite the inhibition of the kinase activity using an inhibitor the target remains effective, reducing the potential of an inhibitor. This is due to the "scaffolding effect" because of which although regulation of downstream processes by IRAK-4 has been primarily linked with kinase function; however, still, various reports have suggested that IRAK-4 has a non-kinase function in a variety of cell types. This is attributed to the myddosome complex formed by IRAK-4 with myd88, IRAK-2, and IRAK-1 which by itself can cause the activation of downstream effector TRAF6 despite inhibition of the kinase domain of IRAK-4. With this challenge, several groups initiated the development of targeting protein degraders of IRAK-4 using Proteolysis-Targeting Chimeras (PROTACs) technology to completely remove the IRAK-4 from the cellular milieu. In this review, we will capture all these developments and the evolving science around this target.


Interleukin-1 Receptor-Associated Kinases , Signal Transduction , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , NF-kappa B/metabolism , Phosphorylation , Adaptor Proteins, Signal Transducing/metabolism
...